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Abstract

A nonuniform, fast Fourier transform can be used to reduce the computational cost of the empirical characteristic
function (ECF) by a factor of 100. This fast ECF calculation method is applied to a new, objective, and robust method
for estimating the probability distribution of univariate data, which effectively modulates and filters the ECF of a
dataset in a way that yields an optimal estimate of the (Fourier transformed) underlying distribution. This improve-
ment in computational efficiency is leveraged to estimate probability densities from a large ensemble of atmospheric
velocity increments (gradients), with the purpose of characterizing the statistical and fractal properties of the veloc-
ity field. It is shown that the distribution of velocity increments depends on location in an atmospheric model and
that the increments are clearly not normally distributed. The estimated increment distributions exhibit self-similar
and distinctly multifractal behavior, as shown by structure functions that exhibit power-law scaling with a non-linear
dependence of the power-law exponent on the structure function order.

Keywords: empirical characteristic function, ECF, kernel density estimation, histogram, nonuniform FFT, nuFFT

1. Introduction

Research often calls for the estimation of probability distribution functions (PDFs) derived from empirical data.
For instance, information about a distribution may be necessary to assess whether differences between two sets of data
are statistically significant, or it may be required to estimate the probabilities that outliers come from the distribution
of a given dataset. A variety of PDF approximations (e.g., histograms) are frequently used to represent the relative
occurrence of data values.

This paper describes a computationally efficient method to estimate probability distributions based on recent work
by Bernacchia and Pigolotti [1]. We have developed this technique to support research on scaling in the Earth’s
atmosphere, but the method should be generally applicable across the physical and engineering disciplines. We have
initially applied this method to aid the development of a theory about resolution dependence in atmospheric models.
The following discussion necessarily makes heavy use of some terms that are commonly used in the atmospheric
sciences but that may be unfamiliar to researchers from other fields. Appendix A provides definitions for some of
these terms.

Many studies also require strictly non-parametric estimation procedures so that the resulting PDFs are free of
a priori assumptions regarding their underlying functional forms. In our particular application, the normality of
velocity gradients is a key hypothesis that should be proven or disproven from the emergent properties of the data
itself without recourse to Gaussian fitting. The traditional methods for estimating PDFs, e.g. binning methods and
kernel density techniques, require specification of a bandwidth parameter that heavily influences the shape of the
resulting PDF [2, 3, 4]. While methods exist for estimating an optimal bandwidth, these methods usually require
some assumption about the shape of the underlying PDF [5, 4, 1]. Given that our application requires an unbiased
determination of the normality of the velocity increments, estimation methods utilizing such assumptions would not
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be suitable for our analysis. While methods do exist for testing normality (e.g., [6]), our analysis additionally requires
that we estimate various moments of the distribution. One can readily and efficiently perform tests for normality and
estimate moments if an estimate of the underlying distribution is available.

For these reasons, the method of Bernacchia and Pigolotti [1] for estimating PDF distributions should in principle
be well suited for such an application because it provides an objective PDF estimate that requires no prior assumptions
regarding the underlying distribution. Bernacchia and Pigolotti [1] derive an expression for a data-derived, optimal
kernel [7] and the resulting and self-consistent kernel density estimate; their kernel derivation method is even optimal
for multi-modal data. This ‘self-consistent’ estimate converges on the true distribution at a faster rate than traditional
binning or kernel density estimation methods [1].

However, during our initial attempts to apply the PDF estimation method of Bernacchia and Pigolotti [1] (here-
after BP11), we discovered that its computational performance is not practicable. Most of the BP11 algorithm is
implemented in inverse Fourier space and is based on transforming the data under analysis to inverse Fourier space by
computing its empirical characteristic function, Cn, given by:

Cn =
N

∑
j=1

ei·χ j ·τn , (1)

where χ j are a collection of data points that are presumed to come from a random distribution, N is the number of
data points, and τn are the frequencies at which the empirical characteristic function is calculated. Calculation of Cn

is equivalent to an inverse discrete Fourier transform in which the Fourier coefficients are a j = 1 for each of the χ j

data points. Since the direct calculation of the discrete Fourier transform is notoriously slow, it would be preferable
to evaluate this discrete Fourier transform using the fast Fourier transform (FFT) method of Cooley and Tukey [8].
However, the FFT is not directly applicable since it requires that the Fourier coefficients are specified on an evenly-
spaced grid. This requirement is violated since the χ j data points are presumed to be randomly distributed, and so
their spacings are also random.

In this paper, we show how to accelerate the computational performance of the BP11 density estimation method
using the nonuniform FFT (nuFFT) method of Greengard and Lee [9] to approximate the empirical characteristic
function (Section 2). We demonstrate that this method substantially improves the speed of the BP11 density estimation
method without compromising its accuracy or convergence properties (Section 3). We apply this method to estimate
the PDF of velocity increments from atmospheric model output in support of a hypothesis relating velocity increments
to model resolution dependence (Section 4). We show that the increments from a specific atmospheric model are
generally bell-shaped but demonstrably non-Gaussian. Further, we use the estimated distributions to show that the
velocity field is self-similar and multifractal. This ability to rapidly characterize increment distributions has thus
proved invaluable in our development of a robust theory on resolution dependence in atmospheric models.

2. Estimating the self-consistent density via FFT

2.1. Summary of the BP11 self-consistent density estimation method

Kernel density estimation is a widely used method for estimating the probability distribution function (PDF) of a
given dataset (e.g., [2, 3]), in which the PDF is approximated as a normalized sum of kernel functions K(χ) centered
on each data point χ j:

f KDE(χ) =
1
N

N

∑
j=1

K(χ−χ j).

The choice of K(χ)–particularly the width of K–can heavily influence f KDE , and there is a host of literature
devoted to choosing the kernel width. Except in some specific circumstances (e.g., the data are known to be normally
distributed [2]), the choice of the kernel and the kernel width are subjective [10, 1, 4]. Bernacchia and Pigolotti [1]
recently derived a method for objectively estimating the probability distribution function (PDF) of a univariate dataset.
They show that the dataset itself can be used to derive a kernel (both its shape and width) in an objective, data-driven
way. We summarize the essential details of the derivation and the method here.

The inverse Fourier transform of the KDE estimate is simply the product of the transform kernel and the ECF of
the data; we derive this relationship here, since it is relevant for understanding the role of the nuFFT in the BP11
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method. Recognizing that a kernel density estimate is equivalent to a sum of convolutions between a kernel function
and delta functions centered on the data:

f KDE(χ) =
1
N

N

∑
j=1

K(χ−χ j) =
1
N

N

∑
j=1

∞∫

−∞

K(s) ·δ (χ−χ j− s)ds

=
1
N

N

∑
j=1

K(χ)∗δ (χ−χ j),

the kernel density estimate can readily be transformed to its inverse Fourier-space representation, φ KDE using the
convolution theorem:

φ KDE(τ) = Fτ
−1 [ f KDE] = Fτ

−1

[
1
N

N

∑
j=1

K(χ)∗δ (χ−χ j)

]

= κ(τ) · 1
N

N

∑
j=1

eiχ jτ

= κ(τ) ·C (τ),

where Fτ
−1 represents the inverse Fourier transform from data space, χ , to inverse Fourier space, τ; κ represents the

inverse Fourier transform of K; and C represents the empirical characteristic function of the data.
Bernacchia and Pigolotti [1] use this relationship and the result of Watson and Leadbetter [7], which states that

the mean squared error of a kernel density estimate is minimized if the kernel satisfies the equation: κ̂ = N · (N−1+
|φ |−2)−1. They use this optimal kernel to provide an equation for the optimal PDF estimate (in inverse Fourier space):

φ̂(τ) = κ̂(τ) ·C (τ) = C (τ) · N
N−1+ |φ |−2 . (2)

Since the underlying distribution (and its transform, φ ) is assumed to be unknown, they derive a solution to Equa-
tion 2 using an iterative procedure in which an initial guess at φ , φ0, is used to estimate φ̂1 which is then used as the
next guess at φ to estimate φ̂2, and so on. They show that if this iterative procedure converges, that it will converge to a
solution φ sc = κsc ·C (which provides a self-consistent solution to Eqn 2: φ sc(τ) = C (τ) ·N · [N−1+ |φ sc(τ)|−2]−1),
provided κsc satisfies the following equation, which is a function of the ECF amplitude:

κsc(τ) =
N

2(N−1)

[
1+

√
1− 4(N−1)

N2|C (τ)|2

]
IA(τ), (3)

where IA(τ) represents a frequency filter that is 1 for the set of accepted frequencies A (defined below), and 0 otherwise.
In order for Equation 3 to provide a stable solution to Equation 2, the set of accepted frequencies must be specified

such that |C (τ)|2 ≥ 4(N− 1)N−2 for τ ∈ A. Further, the frequency set A may exclude an arbitrary additional subset
of otherwise acceptable frequencies, which reflects the arbitrariness of the initial guess φ0 of the iterative solution.
Bernacchia and Pigolotti [1] show that φ sc converges to the true underlying distribution as N increases, provided that a
number of conditions are met, including integrability of the characteristic function and boundedness of A. The stability
condition on A forces κsc(τ) to be real-valued, implying that its data space representation Ksc(χ) is symmetric.

Finally, this self-consistent estimate can be Fourier transformed to obtain the data-space estimate of the PDF:
f SC(χ) = Fχ [κsc(τ) ·C (τ)]. Provided that the ECF has been calculated, calculation of κsc(τ) is trivial, so the bulk
of the cost of computing f SC(τ) comes from the computation of the ECF.

2.2. Reducing the computational cost of the ECF using a nuFFT

While exploring this BP11 density estimation method, it became clear that the ECF itself is a type of direct Fourier
transform (DFT):

C (τ) ∝
N

∑
j=1

a j · eiχ jτ ,
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where χ j represents abscissa values in data space, τ represents abscissa values in inverse Fourier space, and the
a j Fourier coefficients are all 1. Since the χ j values are assumed to be randomly distributed, they presumably are
not regularly spaced, which excludes the possibility of using a standard FFT method to evaluate the DFT. However,
the nonuniform FFT (nuFFT) method described by Greengard and Lee [9] is specifically designed to reduce the
computational cost of DFTs on irregularly-spaced data. The nuFFT method can be summarized as follows.

An arbitrary dataset of abscissa and ordinate pairs, χ j and a j, can be viewed as a continuous function that is a sum
of weighted delta functions:

a(χ) =
N

∑
j=1

a j ·δ (χ−χ j).

Convolution of a(χ) with a Gaussian gh spreads the delta functions across the abscissa, which results in a smooth
curve: a′(χ) = a(χ)∗gh(χ). By the convolution theorem, the Fourier transform of a′(χ), c′(τ), is proportional to the
Fourier transform of a(χ), c(τ):

c′(τ) = Fτ
(
a′(χ)

)

= Fτ (a(χ)∗gh(χ))
= c(τ) · g̃h(τ),

where g̃h(τ) is the Fourier transform of gh.
If the abscissa is sampled at regular intervals, χk, then a FFT technique can readily be used to approximate the

Fourier transform of a′(χk). Finally, the convolution theorem is used to deconvolve c′(τn) (divide c′ by g̃h), which
results in an approximation of the discrete Fourier transform of the irregularly-spaced (χ j,a j) data. Greengard and Lee
[9] show that the nuFFT can approximate the DFT with arbitrary accuracy, which is controlled by the interaction of
three main factors: the width h of the convolving Gaussian; the number surrounding χk values at which the convolution
is calculated for each (χ j,a j) point; and the spacing of the χk grid. The speed of the nuFFT method, which is a trade-off
for accuracy, is also controlled by these three factors.

With respect to using the nuFFT to calculate the ECF, the (χ j, a j) abscissa/ordinate pairs are identically (χ j,1),
where χ j represent the random (irregularly spaced) data. With all the a j values set to 1, the convolution step effectively
reduces to a (unnormalized) kernel density estimate of the data:

a′(χ) =
N

∑
j=1

gh (χ−χ j) .

So in statistical terms, the essential steps of the nuFFT approximation of the ECF can be summarized as: (1) perform
a kernel density estimate (on a regular grid), (2) use an inverse FFT to transform the kernel density estimate to inverse
Fourier space, and (3) divide the transformed density by the inverse Fourier transform of the kernel function.

2.3. A Fast BP11 algorithm

The following steps summarize the algorithm that we use to perform a fast and efficient calculation of the BP11
density estimate (for conciseness, we hereon express functions at a given grid point using the function symbol and the
corresponding grid subscript: e.g., Cn ≡ C (τn)):

1. Configure a regular grid and its transform grid: χk and τn.
2. Specify a Gaussian kernel gh(x) = exp

[
−(x/h)2

]
.

3. Convolve the data with the Gaussian to obtain a (unnormalized) kernel density estimate:

f ′k =
1
N

N

∑
j=1

χ j ·gh

(
χk−χ j

h

)
.

4. Perform an inverse FFT of the kernel density estimate to obtain its transform: φ ′n = F−1
τn

( f ′k).
5. Divide φ ′n by the transform of the Gaussian kernel to deconvolve the FFT and obtain an estimate of the empirical

characteristic function: Cn ≈ φ ′n · [g̃(τn)]
−1.

6. Calculate the self-consistent kernel transform κsc
n (Eqn 3).
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7. Calculate the self-consistent PDF transform: φ SC
n = κsc

n ·Cn.
8. Perform an FFT to obtain the self-consistent PDF estimate: f sc

k = F (φ sc
n ).

If applied naïvely, the convolution in step (3) can be as expensive as the direct DFT calculation (or more so). For
N data points, a full calculation of the convolution requires O(N2) calculations, whereas the direct DFT calculation
requires O(N ·M) calculations for M frequency points and hence would be faster if M < N. The speed of the con-
volution can be dramatically improved if the Gaussian contribution from each of the χ j data points is only applied
to a limited set of q surrounding points. To this end, Dutt and Rokhlin [11] provide an expression for specifying
the width of the Gaussian h and the point-width q of the convolution such that the resulting FFT is the same as the
direct DFT within a specifiable accuracy. The convolution part of this algorithm requires O(N ·q) calculations and the
FFT portion requires O(M · logM) [8]. Simple algebraic manipulation can show that if q < M and logM� N, then
N · q + M · logM < N ·M, and so the nuFFT is theoretically faster than the direct DFT calculation. These conditions
also imply that the nuFFT-based calculation is theoretically O(M/q) times faster than the direct calculation.

To simplify the analysis of velocity increment PDFs and to provide a static grid on which all of the estimated PDFs
can be stored, we standardize the data (i.e., χ j = (χ ′j− χ̄) ·σ−1

χ ) prior to applying the density estimation algorithm
(χ̄ and σχ are the mean and standard deviation of the original χ ′j data respectively). We specify χk as 4,097 evenly-
spaced points from -20 to 20 unit standard deviations. Since in our analysis the χ j data points are all real, the Fourier
transform of these points has Hermitian symmetry and hence the redundant negative frequency components of the
transform may be ignored. Therefore the χk grid yields a transform grid τn with 2,049 evenly-spaced frequency points.
We only consider the lowest half of the frequency points (i.e., we set Cn = 0 for n > 1,025) since the nonuniform FFT
method is only guaranteed to provide a good approximation over this range [11]. Following Dutt and Rokhlin [11], we
specify the width of the convolution kernel as h=1.5629, and we apply the convolution to the q=28 χk nearest points
surrounding each χ j data value. We find that this configuration produces an approximation of the ECF that differs
from the exact DFT calculation by less than 10−7 over all considered frequencies (see Section 3 and Figure 1).

We also note that we implemented the selective frequency filter, In, in a slightly different manner than Bernacchia
and Pigolotti [1]. They show that the self-consistent density estimate converges on the true density provided the
filter In is set to 1 for some subset of the frequencies for which C is above the estimate stability threshold given by
|Cn|2 ≥ 4 · (N−1) ·N−2 and set to 0 for all other frequencies. Whereas they choose the subset based on a frequency
cut-off t∗ such that C is above the stability threshold for half of the frequencies within [−t∗, t∗], we choose a cut-off
frequency based on the occurrence of three consecutive C values below the stability threshold. In our implementation
In = 0 for all n > n∗, where n∗ is the index of the lowest frequency for which Cn∗+1, Cn∗+2, and Cn∗+3 are below the
stability threshold. We choose this criterion because it is fast to implement and we find that it avoids an occasional,
spurious leakage of high-frequency components that manifests as high-frequency waves superimposed on the density
estimate. Bernacchia and Pigolotti [1] note that the selection of the subset of frequencies is arbitrary and corresponds
to the arbitrary choice of initial density estimate in the iterative procedure that they use to derive the expression for
φ̂ . As long as the subset is bounded and the bound grows with N, a self-consistent estimate will converge. Our
filter choice satisfies these criteria for integrable characteristic functions, since the stability threshold decreases with
increasing N and therefore higher frequencies are permitted as N increases. Therefore our implementation of the In

filter maintains the convergence properties of the BP11 density estimate (see Section 3 for verification of this).

3. Evaluating against artificial data

3.1. N−1 convergence for the nuFFT-based method

To show that the FFT-based approximation of the empirical characteristic function C (FFT ) reproduces the exact
and direct calculation C (DFT ) at high precision, we compare the two quantities calculated from the samples drawn from
a normal distribution with sample sizes ranging from 64 to 4,096. Figure 1a shows the absolute difference between
the two quantities, |C (FFT )−C (DFT )|, as a function of frequency for several different sample sizes. The FFT-based
estimate differs from the true estimate by less than 10−7 or less over the entire frequency range. For reference, the
inset of Figure 1 shows C (FFT ).

Because the FFT-based approximation of the ECF differs from the true calculation of the ECF by such a small
amount, the convergence properties of the BP11 density estimate are unaffected. Figure 1b shows the mean squared
error, E2(N) = ∑N

j |N (χi)− f̂ (χi)| ·∆χ , where N (χ) is the normal distribution and ∆χ is the grid spacing. E2(N)
declines following N−1 for sample sizes ranging from 21 to 219 in agreement with the convergence rate presented by
BP11. While the convergence-rate of the FFT-based method is in accord with the convergence rate from BP11 over
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Figure 1: (a) The absolute difference between the FFT approximation of Cn and its exact value calculated via DFT. The inset shows the squared
magnitude of the FFT-based estimate of Cn. (b) The convergence of the average absolute error squared, and the calculation time as a function of
sample size. The black line shows the calculated error from samples drawn from a normal distribution, the grey line shows N−1 convergence, the
solid red line shows the calculation time from the FFT-based estimate, and the dashed red line shows the calculation time from the direct calculation
of Cn. (c) The (normalized) probability distributions of increments, at various distances, from an fBm field with H=0.6 on a semilog plot. The inset
shows the first–third order structure functions from these distributions, which should vary as a power law for a self-similar field. Please refer to
Appendix A for definitions of terms. (d) The power-law exponents from the mth order structure functions. The grey line shows Hm = H ·m, which
is expected for an fBm field.

the range of sample sizes shown, the FFT-based method should have a lower-bound on E2 that is controlled by the
approximation error, ε = |C (FFT )−C (DFT )| ∼ 10−7. If the approximation-error of the density estimate, | f̂ (FFT )−
f̂ (DFT )|, is larger than the nuFFT approximation error in the ECF, then E2 will be dominated by ε , so E2 will have a
lower bound of E2 ∼O(ε2)∼O(10−14). In this case, E2 for the FFT-based method should flatten out for sample sizes
larger than N ∼ O(1014), since E2 ∝ N−1. This nonconvergence for extremely large sample sizes could be mitigated
by increasing the width of the Gaussian kernel (both h and q) to achieve a more precise estimate of the DFT. For the
analysis in this manuscript, however, the sample sizes will not be so large that E2 approaches its limit.

Figure 1b also shows the time required to perform the density estimates from both the FFT-based method and
the DFT method. As described in Section 2, the FFT-based method scales as O(N ·q + M · logM) whereas the direct
method scales as O(N ·M). Because we use M = 2,049 for both methods and for all sample sizes, both methods scale
proportionally to N1 for large sample sizes, as evinced by the parallel lines in Figure 1b. For sample sizes larger than
O(103), the FFT-based method is approximately 100 times faster than the DFT method. For an O(106) sample size,
the FFT method takes O(1) second versus the O(102) seconds for the DFT calculation.
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3.2. Increment PDF estimates from an fBm field
In anticipation of the analysis presented in Section 4, we show a sample version of the same analysis applied to a

dataset with well-known properties that mimics the data to which this method is applied in Section 4. The analysis in
Section 4 has two goals: (1) to determine whether velocity increments are distributed normally, and (2) to show that
the width and moments of the increment PDFs scale as a power-law of increment distance (as expected for a field with
self-similar, fractal behavior).

Because atmospheric velocities are known to exhibit statistical self-similarity in reality and in models [12, 13, 14],
we apply the analysis to a realization of a fractional Brownian motion, which is a type of self-similar field [15].
Fractional Brownian motion (fBm) can be categorized as a type of ‘red-noise’ field where the power spectrum of the
field decays following a power-law: i.e., P( f )∼ f−β , where P is the spectral power of the fBm field, f is the Fourier
frequency, and β is the scaling exponent. fBm fields are characterized by their Hurst parameter H [15], which is
directly related to β for fBm fields by the relationship H = (β −1)/2 [16].

Davis et al. [16] define the mth-order structure function of a field F as SF
m(∆x) ≡ 〈|F(x)−F(x + ∆x)|m〉, which is

the mth (absolute) moment of the PDF of increments calculated at distance ∆x (we define 〈. . .〉 as the average). For
fBm fields, the structure functions scale as a power-law of increment distance: SF

m(∆x) ∼ ∆xHm . The exponent for
the mth-order structure function Hm is simply related to the Hurst exponent of the fBm field by Hm = H ·m [17]. If
we define the increment as ∆xF ≡ F(x)−F(x +∆x), then the mth-order structure function can be calculated from the
increment PDF by

SF
m(∆x) =

∫ ∞

−∞
|∆xF |m ·P(∆xF)d∆xF ∼ ∆xH·m. (4)

Since the fBm field is generated based on samples drawn from a normal distribution, it can be shown that the
distribution of increments are also normally distributed [17]. Therefore we expect P(∆xF) to be a normal distribution
with variance SF

2 (∆x)∼ ∆x2H , implying that

P(∆xF) =
1

σo∆xH
√

2π
· e−(∆xF)2/2(σo∆xH )2

, (5)

where σo is a constant of proportionality related to the total variance of the field F . This is the form of the PDF for
any self-similar field with increments that are normally distributed.

We use the method of Wood and Chan [18] to generate an fBm field with H = 0.6 and 217 points. We apply the
fast, self-consistent density estimation method described in Section 2 to estimate the PDF of increments at distances
of 21 to 29 grid points, with distance intervals that are integer powers of two. Figure 1c shows the PDF estimates
of the standardized increments f̂ (∆xF). The standardized increment PDFs (colored curves) overlap strongly and are
consistent with a normal distribution with zero mean and unit variance (the thick grey curve). The inset of Figure 1c
shows that the moments of the PDFs scale as power laws (e.g., straight lines given log-log axes) of the increment
distance. The structure functions are well-described by power laws as expected from Equation 4. We estimate the
exponents of the structure functions using the York et al. [19] maximum likelihood method in log-log space, and we
show in Figure 1d that the exponents vary as Hm = 0.6 ·m as expected for an fBm field with H = 0.6 [17].

As noted at the beginning of this section, the goal of this analysis is to show whether (1) increments are normally
distributed, and (2) the moments of the increment PDFs scale as a power-law of increment distance. This analysis
technique uses the fast, self-consistent density estimation method as an efficient way of verifying that an fBm field
has these characteristics. The standardized PDFs overlap and are all consistent with a normal distribution, which
provides evidence that the increments are distributed normally. The approximate linearity of the structure functions in
the log-log inset of Figure 1c provides evidence that the increment PDFs scale as a power-law of increment distance.
And finally, the linearity of the Hm vs m points shown in Figure 1d provides further evidence that the increment
PDFs are normally distributed. It can be shown that the moments of the normal distribution follow the relationship∫ ∞
−∞ |x|mN (x)dx ∼ σm, where σ is the width of the normal distribution. From Equation 5, the PDF width is σ =

σo ·∆xH , so the moments should follow the relationship Mm ∼ σm ∼ ∆xH·m. Therefore the Hm = H ·m relationship
demonstrated in Figure 1d is consistent with increments that are normally distributed and have PDF widths that vary
as ∆xH .

4. Application to atmospheric model output

In a forthcoming manuscript (O’Brien, T. A., W. D. Collins, S. A. Rauscher, T. D. Ringler, M. Martini, W. Gustafson,
and P. Ullrich, Fractal velocity fields cause resolution dependent updrafts in variable resolution atmospheric models.
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Journal of Geophysical Research. In Prep.), we develop a theory relating the distribution of vertical velocities (up-
drafts) in an incompressible atmospheric model to the probability distribution of horizontal velocity increments. We
show that this theory predicts a resolution-dependent broadening of the vertical velocity distribution in a variable-
resolution atmospheric model. In particular, for a self-similar horizontal velocity field with normally distributed hori-
zontal increments, the theory predicts that the mean magnitude of vertical velocities 〈|w|〉 is simply related to the grid
spacing ∆x by 〈|w|〉 ∼ ∆xH−1, where H is the Hurst exponent that characterizes the self-similarity of the horizontal
velocity field.

Our analysis of model output shows that the vertical velocity distribution broadens consistent with this ∆xH−1

relationship. However, we have no a priori reason to expect that the horizontal velocity increments are distributed
normally, and so it is unclear whether the observed broadening of the vertical velocity is truly consistent with our
prediction. In order to characterize the distribution of horizontal velocity increments to evaluate this finding, it is
necessary to estimate the PDF of O(105) sets of O(106) increment values. Given the amount of data reduction
required in our analysis, and in fact in many other applications, a suitable method for estimating the PDFs should
be as fast as possible to minimize the computational cost. The nuFFT-based improvement introduced in Section 2
reduces the computational cost of the BP11 method from approximately 102 seconds per estimated PDF to 1 second
per estimated PDF (when applied to 106 data points). This reduces the computational cost of our analysis from O(103)
CPU hours (e.g., a month on a serial processor) to O(10) CPU hours.

We apply the analysis presented in Section 3 to output from an atmospheric model with an idealized setup. We
use output from the Community Atmosphere Model 4 (CAM4) [20], which is a modular hydrostatic atmospheric
model with a variety of parameterizations that simulate various processes important for atmospheric dynamics (e.g.,
radiative transfer, convection, precipitation, etc.). We use a version of CAM4 that includes the Model for Prediction
Across Scales atmospheric (MPAS-A) dynamical core, which predicts the evolution of the atmosphere by evaluating
conservation laws (e.g., conservation of mass, momentum, etc.) on a centroidal Voronoi tesselation of the sphere
[14, 21].

The MPAS-A dynamical core is capable of operating on nonuniform grids that can effectively zoom in on an
area of interest, which is one of the model’s distinguishing features. Initial evaluation of CAM4 with the MPAS-A
dynamical core showed that the model exhibits some distinctly resolution-dependent artifacts [14, 22]. Subsequent
analysis has shown that this resolution-dependence may be linked to resolution dependence of the vertical velocity
field [23], and we have recently developed a theory linking the resolution dependence of the vertical velocity field
to the self-similarity of the horizontal velocity field. The theory relates the PDF of vertical velocities to the PDF of
horizontal velocity increments.

To characterize the distribution of horizontal velocity increments at the model’s highest resolution, we use the
uniform-resolution 30km simulation described by Rauscher et al. [14]. We use one year of model output that is
recorded for every 6 model hours. To facilitate this analysis, we have interpolated the CAM4 output from the its
native, unstructured grid to a grid with uniform latitudinal and longitudinal spacing that has approximately the same
30km resolution as the native grid; in this grid, the globe is divided into 768 latitudes and 1,152 longitudes. The model
is configured in accord with the aquaplanet protocol specified by Neale and Hoskins [24], in which the surface of the
simulated planet is covered with water, and all boundary conditions are specified with rotational (in the direction of
planetary rotation) and hemispheric symmetry. We leverage the rotational symmetry by treating latitudinal bands at a
given level (altitude) as statistically identical, which we use to improve our sampling statistics.

At each time, latitude, and level in the model output, we calculate zonal velocity increments in the zonal direction
(i.e., ∆xU , where U is the zonal wind velocity and x is the distance in the zonal direction). We calculate increments at
all grid spacings that are powers of 2 between 20 to 210. We use the FFT-based density estimation method described
in Section 2 to calculate the empirical characteristic function for each set of increments.

We parallelized the algorithm described in Section 2 by performing steps (1–5) in parallel for each time slice. We
perform an additional step (60), in which we add the empirical characteristic functions from each time slice (treating
values at each specific latitude and level separately) to obtain the empirical characteristic function for zonal velocity
increments for the full year of model output. We then apply steps (6) and (8) to obtain the estimate of the probability
density of zonal velocity increments for each latitude and level. We use these probability densities to estimate the
1st through 9th absolute moments of each distribution, which yield the 1st through 9th order structure functions of the
zonal velocity field (see Section 3.2).

Figures 2 a, d, and g show the estimated probability densities of the zonal velocity increments f̂ (∆xU) from three
distinct regions of the atmosphere: 40oS at the 700 hPa level (approximately 3 km altitude), 0oN at the 510 hPa level
(approximately 5 km altitude), and 30oN at the 970 hPa level (approximately 400 m altitude). These increment prob-
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Figure 2: (a,d,g): Standardized zonal velocity increment distributions at various distances compared with a normal distribution (dotted gray line)
and a logistic distribution (solid gray line); (b,e,h): their first order structure functions (blue dots) compared with a power law fit (dashed gray line);
and (c,f,i): estimated exponents for the 1st through 9th order structure functions compared with the monofractal Hm = m ·H1 relationship (solid
gray line). Subfigures (a–c), (d–f), and (g–i) are grouped by location (see Figure 3, which marks these as locations 1, 2, and 3 respectively). Their
locations are, respectively: 40oS at the 700 hPa level (approximately 3 km altitude), 0oN at the 510 hPa level (approximately 5 km altitude), and
30oN at the 970 hPa level (approximately 400 m altitude).

ability distributions, which are all standardized, overlap relatively well, which is consistent with self-similar behavior.
Figures 2 b, e, and h show the first absolute moment of the increment distributions as a function of increment distance
(i.e., the first-order structure functions). In all three figures, the first order structure functions exhibit approximate
power-law scaling over a relatively wide range of increment distances, which is also consistent with self-similar be-
havior. The dashed gray lines in the figures show a power-law fit, using the York et al. [19] maximum likelihood
method, to the structure functions for increment distances ranging between approximately 100 km and 500 km. We
choose these bounds for two separate reasons. For the lower bound, it is well known that the diffusive properties of
atmospheric models tend to dampen variability for length scales ranging from one grid cell to ten grid cells [13]. This
effect manifests as a steepening of the first order structure functions for the two smallest increment distances (distances
corresponding to 1 and 2 grid cells), so we restrict the fit to increment distances that are greater than or equal to 4 grid
cells, which is approximately 100 km. Additionally, since it is hypothesized that there should be a scale-break for
distances greater than approximately 500 km (e.g., [12]), we restrict our fit to increment distances less than or equal to
this value.

We perform a similar power-law fitting procedure for the 1st through 9th order structure functions. Figures 2
c, f, and i show the estimated power-law slopes (the structure function exponents) Hm as a function of structure
function order m. As discussed in 3.2, a self-similar field with normally-distributed increments should have structure
function exponents that scale linearly with the structure function order, i.e.,: Hm = H1 ·m. Such monofractal scaling
is shown as a solid gray line in Figures 2 c, f, and i. The zonal velocity structure function exponents approximately
follow this monofractal scaling for the 1st and 2nd order structure functions, but they diverge rapidly for the higher
order exponents. This divergence is characteristic of a multifractal field [16], and it indicates that the zonal velocity
increments are not distributed normally.

It is also clear from comparing the estimated distributions in Figures 2 a, d, and g with that of a unit normal
distribution (shown as a gray dashed curve in all three figures) that the estimated distributions do not overlap well with
the normal distribution. In exploring other potential distributions, we found that the increment distributions closely
matched a standard logistic distribution– f (x) ∼ sech(x/2)–over a wide portion of the atmosphere (shown as a solid
gray curve in all three figures). However, it is apparent in Figure 2g that some areas of the atmosphere have zonal
increment distributions that are quite positively skewed and are therefore inconsistent with symmetric distributions
like the logistic distribution.

To demonstrate that the scaling properties of the zonal velocity field vary throughout the atmosphere, Figures 3 a
and b show latitude-versus-height maps of H1, and the excess kurtosis of the increment PDFs. (It is conventional in
atmospheric sciences to express heights in terms of atmospheric pressure, which decreases monotonically with height.)
We calculate the excess kurtosis, γ2 as follows:

γ2 =
〈|∆xU |4〉
〈|∆xU |2〉2

−3, (6)

and we average the excess kurtosis from increment distributions with increment distances ranging from approximately
100 km to 500 km (the same range as used in the power-law fit described previously).

Figure 3a shows that the first order structure function H1 varies systematically throughout the atmosphere, with
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relatively small values near 0o latitude and relatively large values near 40o N/S. This is consistent with the first-order
structure function of the water vapor field reported by Pressel [25] for a similar model configuration. It shows that
the (modeled) atmosphere is not well-characterized by a single scaling exponent, as suggested by Nastrom and Gage
[12], but that the fractal behavior of the atmosphere ranges from anti-persistent (H1 < 0.5) to persistent (H1 > 0.5)
depending on location.

Figure 3: (a): A latitude vs. height map of the estimated power law exponent from the first order structure function of the zonal velocity increments.
The gray contours depict lines of constant zonal velocity (m/s) to show the location of the midlatitude jet streams. (b) A latitude vs. height map of
the excess kurtosis (see text for definition) of the increment PDFs; for reference, a normal distribution has zero excess kurtosis. In both figures, the
black numbers 1, 2, and 3 indicate the locations, respectively, from which Figures 2 (a–c), (d–f), and (g–i) are calculated.

Further, the excess kurtosis, γ2, which is a parameter that describes the ‘peakedness’ of a distribution relative to
the normal distribution, also varies throughout the atmosphere. Figure 3b shows that γ2 varies from approximately 1
at 0o latitude to approximately 7 near 30o N/S. A normal distribution is characterized by zero excess kurtosis, whereas
distributions with sharper peaks and fatter tails (relative to the normal distribution) have positive excess kurtosis. The
logistic distribution has γ2 = 1.2, which is consistent with values over a wide area of the equator.

Interestingly there are zones of high kurtosis near 1000 mb at approximately 30o N/S; these leptokurtic zones are
associated with positive skew. Examination of Figure 2g, which shows the estimated increment distributions from
this high-kurtosis zone, reveals that the negative half of the distribution overlaps reasonably well with the normal
distribution, whereas the positive half of the distribution has wide tails. This positively skewed distribution reflects an
abundance of zones in which the wind speed tends to accelerate in the eastward direction, which is indicative of a force
acting in that direction. That this skewed distribution occurs in the midlatitudes (near 30o latitude), where the effect
of Earth’s rotation becomes important, suggests that the Coriolis force may be the cause of the skewed distribution.
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5. Discussion

5.1. Improving the speed of ECF-based methods using the FFT

While we could have used other methods of density estimation, such as binning or traditional kernel density
estimation, the Bernacchia and Pigolotti [1] method avoids the complication of having to choose either bin width or
kernel bandwidth, which is a subjective choice when faced with data from an unknown distribution. The Bernacchia
and Pigolotti [1] method simultaneously and objectively determines both the optimal shape and optimal bandwidth
for a kernel density estimate. However, because the Bernacchia and Pigolotti [1] method involves a transformation
from data-space to Fourier-space (i.e., calculation of the empirical characteristic function), the method is quite slow
if the empirical characteristic function is calculated using a direct Fourier transform. We show in Sections 2 and 3
that replacing the direct Fourier transform with a nonuniform FFT can dramatically increase the speed of the method
without compromising the accuracy of the method.

As far as we are aware, no authors have explored the use of nonuniform FFT methods for calculating empirical
characteristic functions (ECFs) in general, even though empirical characteristic functions have a wide variety of uses,
including: testing for distribution symmetry [26], testing for data independence [27, 28], testing whether data belong
to a given distribution family [6, 29], testing whether two sets of data belong to the same family [30], and model fitting
[31, 32, 33]. While the results in Figure 1b show timings for the full BP11 density estimation, the computational time
of the method is dominated by calculation of the ECF. The results in Figure 1 (and the order-of-magnitude calculations
presented in Section 2.3) show that the nonuniform FFT can increase the calculation speed of the ECF by two orders
of magnitude while keeping the approximated ECF accurate to the 7th decimal place.

The nonuniform FFT could be especially beneficial for calculating the ECF of multidimensional datasets. In this
manuscript, our use of the nonuniform FFT method is limited to one-dimensional data, since the BP11 density esti-
mation has so far only been developed for univariate data. However, the nonuniform FFT method is also applicable to
multidimensional transforms [9], and so the idea developed in this manuscript could easily be extended to multidimen-
sional data. For N sets of d-dimensional data, direct calculation of the ECF onto a Fourier grid with M frequencies in
each dimension requires O(d ·N ·Md) calculations. On the other hand, a nonuniform FFT method that uses a q-point
convolution requires O

(
N ·qd +Md · log(Md)

)
calculations. Following the same assumptions in Section 2.3 (q < M

and logM � N) the nonuniform FFT method is roughly O
(
(M/q)d

)
times faster than the direct calculation. Both

the direct and nuFFT ECF calculation methods suffer a ‘curse of dimensionality’ (i.e., the computational complexity
scales as a power of the dimensionality), but the nonuniform FFT method reduces the negative impact of increased
dimensionality by only applying the convolution to a relatively small qd hypercube of points surrounding each datum.
For M/q∼O(100), as in this manuscript, an FFT-based calculation of the ECF for bivariate data would be O(10,000)
times faster than the direct calculation.

5.2. Summary

The analysis in Section 4 shows that the zonal velocity increments in our atmospheric model output have incre-
ments that are clearly not distributed normally (Figures 2 a, d, and g) and that the field is multifractal (Figures 2 c, f,
and i). Based on the excess kurtosis values shown in Figure 3b, no portion of the model’s atmosphere has increments
that are normally distributed. This analysis has shown that our theory relating the self-similarity of the horizontal wind
field to the distribution of vertical velocities, which was developed based on a wind field with normally distributed
increments, needs to be generalized to account for a broader range of distributions. The ability to rapidly and robustly
characterize the zonal velocity increment distributions has thus proved invaluable for helping us advance our scientific
work.

This manuscript generally shows that nonuniform FFT methods can be used to dramatically reduce the computa-
tional cost of the empirical characteristic function. Though this manuscript focuses specifically on the case of using
the nonuniform FFT to improve the ECF calculation stage of the Bernacchia and Pigolotti [1] estimation method, this
method should be applicable to other ECF-based methods. We posit that the nonuniform FFT would especially reduce
the computational cost of multidimensional ECF calculations: potentially by a factor of O(100d) for d-dimensional
data.

If the BP11 method can be extended to multidimensional data, then a nonuniform FFT method could be used to
dramatically decrease the computational time of the method. Combined with the nonuniform FFT, a multidimensional
BP11 method could provide an objective, fast, and robust way to estimate multivariate probability distributions. For
the purposes of atmospheric research, such a method could be invaluable for characterizing the interdependency of
atmospheric state variables. For example, a multidimensional BP11 estimate of the joint velocity, humidity, and
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enthalpy PDF could provide a non-parametric method for estimating subgrid fluxes that is complementary to existing
parametric methods (i.e., [34]), which are known to depend on the shape of the assumed PDF [35]. While Bernacchia
and Pigolotti [1] suggest that their method readily extends to multiple dimensions, special care will be required to
develop multidimensional frequency filters (i.e., In in Section 2.3), since neither the filter used in this paper nor the
filter used by Bernacchia and Pigolotti [1] have simple multidimensional analogs.

The BP11 self-consistent density estimation method is an objective and robust way to estimate the underlying
distribution of univariate data. As we show in this manuscript, use of a nonuniform FFT can reduce the computational
cost of the method by a factor of approximately 100. This modification makes the BP11 method fast relative to human
timescales: it requires less than a second to estimate the PDF of 105 data points using Python code on a modern PC.
This makes the FFT-based BP11 method a viable alternative to histogram-based methods in data analysis software
(e.g., SciPy or R). Toward this goal, the lead author is working with his home institution to release the code used in
this manuscript under a free (e.g., GNU) license, so that he may pursue including it in the SciPy stats package.

Appendix A. Definition of terms

velocity increment: the difference between two points in a field at a given distance: ∆xF ≡ F(x)−F(x+∆x).
structure function, mth-order: the mth moment of the increment distribution, as a function of increment distance:
〈|∆xF |m〉.
resolution: the physical size of a grid element in an atmospheric model. Unless otherwise specified, this typically
refers to the horizontal size of grid elements.
vertical velocity: the velocity of air in the direction perpendicular to the Earth’s surface.
horizontal velocity: the velocity of air in the directions parallel to the Earth’s surface.
zonal velocity: horizontal velocity in the direction parallel to the direction of Earth’s rotation (i.e., parallel to lines of
latitude).
fractal velocity field: a velocity field that is statistically self-similar. The statistical distribution of velocities has the
same basic form regardless of the physical scale at which the distribution is calculated, and whose width is a power-law
of the physical scale. The structure functions of such a field are power laws of the increment distance.
Hurst exponent, H: an exponent that characterizes the properties of a monofractal field.
monofractal field: a field in which the increments are normally distributed. The moments of the field are given by
〈|∆xF |m〉 ∼ ∆xH·m.
multifractal field: a field in which the increments are not normally distributed. The moments of the field are given by
〈|∆xF |m〉 ∼ ∆xH (m), where H (m) is a non-linear function of the structure function order.
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A nuFFT method reduces the computational cost of the ECF by 100x. 
 
This enables a fast, robust, and objective kernel density estimation technique. 
 
We estimate PDFs of a huge ensemble of atmospheric model velocity gradients. 
 
The PDFs are self-similar and demonstrably non-Gaussian. 
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